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LETTER TO THE EDITOR 

Symmetries for the super-Kav equation 

P H M Kersten and P K H Gragert 
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands 

Received 2 March 1988 

Abstract. Symmetries and higher-order or generalised symmetries for the SKdV equation 
are constructed. Moreover by the introduction of graded potentials a non-local generalised 
symmetry is obtained, leading to the recursion operator for symmetries in a straightforward 
way, without making use of the bi-Hamiltonian structure. 

In the study of complete integrability of classical evolution equations like Kdv, MKdv,  

Boussinesque, massive Thirring and other well known equations there was a great 
emphasis on Wahlquist-Estabrook prolongation and higher-order or generalised sym- 
metry calculations [ 1-31. 

We constructed computer algebra programs to handle the enormous computations 
arising from these concepts. As a step towards supersymmetric equations we recently 
constructed a graded differential geometry package in REDUCE [4]. 

The present letter treats the first interesting problem handled completely by the 
developed software. 

The notions of graded differential geometry are taken from Kostant [ 5 ]  while the 
graded jet bundle formulation is due to Hernandez Ruiperez and Mufioz MasquC [6]. 

First, the x d v  equation [7] is cast into a graded exterior differential system I.  
Graded infinitesimal symmetries which are vector fields that leave invariant the exterior 
differential system, i.e. 

L"I c I 

are obtained and the result is given. 

to that in the classical case [8], i.e. 
Next, the first higher-order symmetry is constructed, satisfying a similar condition 

L,(D"I) c D"I 

where D"I is the infinite prolongation of the graded ideal I.  Following [9], non-local 
variables are introduced in the graded case and a non-local x, t-dependent higher-order 
symmetry of s K d v  equation is then obtained. 

Finally we derive the Lenard recursion operator for higher-order symmetries of the 
s K d v  equation. 

The s K d v  equation is given by the following system of graded partial differential 
equations [7]: 
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where subscripts denote partial derivatives; t is the time and x is the space variable; 
U, x and r are even (commuting), while 4 is odd (anticommuting). We shall often use 
graded instead of super, following Kostant. 

We now construct the graded exterior differential system I associated with ( I ) ,  
generated by the 2-forms 

a ,= -d tdu+dxd t ( -u , )  

(~2=-d f  du,+dX dt(-u,,) 

a3= -dx du -d t  d u ( 6 ~ ) S d t  du,,+dt d4,(3+) 

( ~ q = - d t  d++dxdt(-+,)  

( ~ 5 = - d t  d@,+dx dt(-+,,) 

( Y ~ =  -dx d+ -d t  du(3+)-dt  d+(6u)+dt  d4,,(4). 

defined on R'5*3'= {(x, t, U, U,, U,,; +, +,, &,)}. Throughout this letter we shall use 
the right module structure of differential forms. 

We now search for vector fields V defined on R'5'3) which satisfy the infinitesimal 
symmetry condition 

LVI c I (3)  

where Lv denotes the (graded) Lie derivative with respect to the vector field V. 
It is easy to see that the vector fields V satisfying (3) constitute a graded vector 

space; in effect a graded Lie algebra. So we can restrict ourselves in the search for 
solutions of (3) to even and odd vector fields. 

Condition (3) leads to overdetermined systems of partial differential equations for 
the coefficients of the vector field V. Solving these over-determined systems we obtain 
the following result. 

7'heorem 1. The graded Lie algebra of infinitesimal symmetries of the sKdv equation 
(2.1) is four-dimensional and generated by the vector fields 

v, = a, v2 =a, v, = tax -:a, 
V , = - ~ a , - 3 t e , + 2 ~ d , + ~ ~ a , .  

(4) 

The vector fields VI, .  . . , V, are even; there are no odd infinitesimal symmetries, so 
the graded Lie algebra of infinitesimal symmetries is just an ordinary Lie algebra. 

Classical higher-order symmetries are defined on the infinite jet bundle J"(x, t, U, 4) 
[8] and satisfy the symmetry condition 

LVD"I c D"I ( 5 )  

where D"I is the infinite prolongation of the exterior differential system I by means 
of the action of the total partial derivative vector fields D,, D, defined by 

D, = a, + u,a, + +,a, + u,a,, +. . . 
D, = d, + urdu + 4 ,d+  + ~ ~ , a ~ ~  + . . . 

Due to the fact that equations (6) satisfy ( 5 )  in an obvious way, the search for 
higher-order or generalised symmetries can be restricted to vertical vector fields; i.e. 
the components of d,, d l  are taken to be zero. 
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The vertical vector fields are proved to have the following representation: 

v =.fa, +gad + ( D f ) a u ,  + (D,g)b,  +. * * (7)  

so we are only interested in the defining functions f, g of the vector field. The functions 
f, g are assumed to depend on a finite number of independent variables of the infinite 
jet bundle. 

In the present graded case we proceed in a similar way, keeping in mind the left 
module structure of the vector fields. 

We restrict our search for higher-order symmetries to euen vector fields; moreover 
our search is for vector fields V whose defining functions f , g  (7) depend on 
x, f, U, 4, .  . . , u , , ~ , ~ ,  4xxxxx, the other components being obtained by prolongation (7). 
The vector field V has to satisfy the symmetry condition (5) which is equivalent to 

whereas ' = 0' should be read as equal to zero on the submanifold in the infinite jet 
bundle J"(x, t ;  U, 4 )  defined by (1) and its differential consequences. Condition (8) 
leads to an overdetermined system of partial differential equations for the function 
f, g including the exterior algebra defined on 4, 4x, &,, 4xx,, +,,,,, ~,,,,. 

From now on we shall write 

ui = ux.,,x 4j = 4 x  ... x - - ,  
i times j times 

(9) 

Using the developed integration package we obtain the following result. There are 
five even vector fields satisfying (8) under the above-mentioned assumptions, i.e. 

PI = ula, + +la+ +. . * 
P 2 =  ( 6 ~ ~ 1  -U3+3&$2)du +(3Ulf$ +6~41-443)d+ +. . . 
P3 = (6fuI + 1) +6f+,d+ + . . . 
P4 = (3 t(6uuI- ~3 + 3+42) + X U I  + 2p}dU + (3 t ( 3 ~ 1 4  + 6 ~ 4 1  - 443) + ~ 4 1  +*+}a+ + . . . 
?s= (us-  1oU3U - 2 O U 2 U l  +30UlU2- 15444- 104,&+3OU1&$1 +30U&b2)du 

(10) 

+ ( 1 6 ~ ~ - 4 0 ~ ~ ~ - 6 0 ~ ~ ~ ~ - 5 0 ~ ~ ~ ~ + 3 0 ~ * ~ ~ + 3 0 ~ ~ ~ ~  - 15U34)d++. . . . 
Note that the vector fields PI, . . . , P4 are equivalent [3] to VI,  . . . , V4 obtained earlier. 

In order to construct the recursion operator for higher-order symmetries we intro- 
duce non-local variables. They can be introduced by prolongation of the exterior 
differential system Z or D"I by means of potential forms or equivalently by prolonga- 
tion of the total partial derivatives D,, D,. For details the reader is referred to [3,9]. 

We first construct the potential forms associated with the vector fields PI, P2, i.e. 
PI, P2 defined by 

dpl -dx( U )  - dt(3u2 - U2+3$41) 

dp2 - dx( u2+ 344 , )  - df(4u3 + u : - ~ u u ~ +  1 2 ~ 4 4 ,  + 84142 - 4443) 
(11) 
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whereas in (12) pI and p r  are to be considered in a formal way. Motivated by the 
results obtained for the classical (ungraded) K d v  equation our search is for a non-local 
vector field V of the following form: 

v = c, t F4a + c2x F2 + C3p Fl + p 2  v* + v* * (13) 
where e4, c2 and PI are defined by ( lo) ,  C1, C2 and C3 are constants and V*, V** 
are vector fields, the defining functions of which have to be determined. The prolonga- 
tion of the vector field V (13) towards the variables a,, , a,, ,~ . . is determined by the 
action of the prolonged total partial derivative vector fields D,, 6, where 

6, = DX f Papl + (U' -k 3441 l a p 2  

6, = D, + ( 3 ~ ' -  ~ ~ + 3 4 4 ~ ) d , ,  + (4u3+ u:-2uu2+ 1 2 ~ 4 4 1  + 84142 -4443)ap2. 

We now apply the symmetry condition including the non-local variables pI ,  p 2 ,  i.e. 

(14) 

where now by ' = 0' we mean vanishing of the Lie derivative on the submanifold of 
J ( x ,  t ;  U, 4 J p l ,  p 2 )  = {(x, t, U, 4, pl ,  p 2 ,  U,+,, . . .} defined by ( 1 )  and its differential con- 
sequences, together with 

P I X  = U p1,=3u2-u2+3C$#q 
(16) 

Conditions (15) lead to an overdetermined system of partial differential equations for 
the defining functions of V* and V"" whose dependency on the jet variables 
u l ,  4 , ,  . . . is induced by the standard grading of s K d v  equations, i.e. 

P 2 x  = u 2 + 3 4 4 ,  p2,  = 4 u 3 +  U: - 2 ~ ~ 2 +  1 2 ~ 4 4 1  + 84142 - 4 4 4 3 .  

deg( x) = - 1 deg( t )  = 3 deg( U )  = 2 deg(4) = t  
deg(p1) = 1 deg(p2) = 3. 

We are searching for a vector field V, whose d,,a, components are of degree 4 and 
3f respectively. Solving the overdetermined system of partial differential equations 
leads to the following result. 

Theorem 2. The vector field V defined by 

v =  -:tF5 4 X F 2  -:PI Fl + v** 
where V** is given by 

v** = ( u * - 2 u 2 - ~ ~ ~ 1 ) a ,  +(&b2-3u4)a, (17b) 

is a non-local higher-order symmetry (even) of the s K d v  equation. 

Note. From s K d v  equation ( 1 )  and (16) including differential consequences the 
coefficients of x, t, p1 , p 2  in (13 )  can be proved to be symmetries. 

In order to compute the Lie bracket of the vector fields ?,, . . . , e4, V we have to 
prolong the results (10) towards the non-local variables. This leads to results similar 
to the results obtained, in the ungraded case, by one of the authors for the massive 
Thirring model. We shall not continue in this direction but shall construct next the 
recursion operator for higher-order symmetries leading to the commuting flows. 
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In the case of the classical Kdv equation, i.e. the ungraded case ( 4  = 0), the Lenard 
recursion operator is obtained by a construction based on a non-local vector field, i.e. 
the ungraded analogue of the vector field V and the Hamiltonian structure of the Kdv 
equation [ 10,111. 

The construction of the recursion operator for symmetries of the sKdv equation 
can be obtained in a similar way and is given below. 

A formal proof of its properties and the fact that the higher-order symmetries 
commute is beyond the scope of this letter and will be published elsewhere. 

The SKdv equation (1) can be written in the following Hamiltonian form: 

where all variational derivatives are taken to be left ones. In (5.1) 

are analogous to the simplectic operator and its inverse. We now proceed in a way 
similar to the ungraded case and calculate the variational derivative of R V, i.e. (a  V)', 
and its adjoint (RV)'*. Then we are led to the recursion operator for symmetries by 
(cf [IO, 111) 

T=R-'{(RV)'-(RV)'*}. (20) 

A simple and straightforward computation starting from V (17a, b) and (19) results 
in the following: 

D 0 D - ~ u D - ' - ~ D - ' ( u )  2D-'(41)-34 
'"(0 1 ) (  -24,D-'-34 4D2 - 41.4 

The use of computer programs to handle graded differential geometry computations, 
and the notion of non-local graded symmetries, leads in a constructive way to the 
recursion operator for symmetries of the sKdv  equation. 
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